美生物学家发明六足旋翼机勘测海洋生物
2020-03-17 

图片 1

旋翼机实际上是一种介于直升机和飞机之间的飞行器,它除去旋翼外,还带有一副垂直放置的螺旋桨以提供前进的动力,一般也装有较小的机翼在飞行中提供部分升力。

图片 2

秉着“知其然然后知其所以然”的态度,在对幻影无人机进行过介绍之后,小科决定讲讲多旋翼无人机的结构和工作原理。

旋翼机与直升机的最大区别是,旋翼机的旋翼不与发动机传动系统相连,发动机不是以驱动旋翼为飞机提供升力,而是在旋翼机飞行的过程中,由前方气流吹动旋翼旋转产生升力,起飞之后靠空气作用力驱动;而直升机的旋翼与发动机传动系统相连,既能产生升力,又能提供飞行的动力。由于旋翼为自转式,传递到机身上的扭矩很小,因此旋翼机无需单旋翼直升机那样的尾桨,但是一般装有尾翼,以控制飞行。

无人机在现在是非常的火热,不管是民用还是军用,或者是用来高空拍摄勘测地形等都有很大的帮助,现在有很多无人机都是四旋翼的,那么大家知道这是为什么么?本篇贤集网小编就来为大家介绍一下四旋翼无人机原理、四旋翼无人机控制系统、四旋翼无人机参数、四旋翼无人机使用方法,一起来看看吧。

一般而言,各品牌无人机结构大同小异,结构构成基本相同,所具有的不同主要体现在品牌特色方面。

近日,美国国家海洋和大气局海洋生物学家韦恩-佩瑞曼和前海军军官唐-李罗伊合作设计了一款六足旋翼机,它具有6个静音发动机,内置陀螺仪,加速计和GPS定位仪。佩瑞曼使用航空装置在动物身体上添加标签,收集皮肤样本和气息样本,这包含着关于动物个体健康程度的重要信息。据悉,这款用于海洋生物研究的六旋翼机花费了佩瑞曼6万美元。

四旋翼无人机原理

首先,无人机是由哪些结构组成的。

标签: 陀螺仪 定位仪

四旋翼无人机飞行原理

1、GPS

根据四旋翼对称的组成结构有两种飞行姿态,一种是根据四旋翼十字对称的结构,将处于同一水平线的一对机架梁作为x轴另一对梁作为y轴的“+”型飞行姿态,另一种是将相应两个梁的对称轴线作为x轴,另一条对称轴线作为y轴的“X”型飞行姿态。

我们每当到一个地方,首先要确定自己的位置,无人机也不例外。它配备有一项我们经常使用的设备,GPS。

(1)“+”型飞行姿态飞行原理

对于GPS,大家并不陌生。它由三部分构成:一是地面控制部分,由主控站、地面天线、监测站及通讯辅助系统组成;二是空间部分,由24颗卫星组成,分布在6个轨道平面;三是用户装置部分,由GPS接收机和卫星天线组成。

“+”型飞行姿态如图2-3(a)所示。“+”型飞行姿态实现垂直运动需要将M1、M2、M3、M4四个电机的转速同时增大或减小,如图2-4(a)所示。如果想让飞行器进行前后移动,实现俯仰运动,当将M1的转速减小或者将M3的转速增大,保持M2、M4的转速不变的时候,四旋翼后会产生向前上方的合力,使四旋翼向前飞行。当将M1的转速增大或者将M3的转速减小,保持M2、M4的转速不变的时候,四旋翼后会产生向后上方的合力,使四旋翼向后飞行,如图2-4(b)所示。如果控制四旋翼左右飞行,实现滚转运动,需要增加M2或减小M4的转速,保持M1、M3的转速不变,这样会产生右上方的合力,使四旋翼向右飞行。当减小M2或者增加M4的转速,同样保持M1、M3的转速不变时,四旋翼会产生向左上方的合力,使四旋翼向左飞行,如图2-4(c)所示。如果想让飞行器左右转向,实现偏航运动,将M1、M3的转速增加或者将M2、M4的转速减小,四旋翼会向右旋转,实现向右偏航。反之,如果将M1、M3的转速减小或者将M2、M4的转速增加,四旋翼会向左旋转,实现向左偏航,如图2-4(d)所示。

因此,无人机身上需要安装的就是用户装置部分。

图2-4“+”型飞行姿态飞行原理图

2、陀螺仪

(2)“X”型飞行姿态飞行原理

陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。

“X”型飞行姿态如图2-3(b)所示。“X”型飞行姿态垂直运动与“+”型飞行姿态相同,只要同时增加或者减小电机M1、M2、M3、M4的转速就能让飞行器实现垂直运动,如图2-5(a)所示。如果想让四旋翼前后飞行,实现俯仰运动,如果将M1、M2的转速减小或者将M3、M4增加时,四旋翼会产生向前上方的力,使四旋翼向前飞行。反之,如果将M1、M2的转速增加或者将M3、M4减小时,四旋翼会产生向后上方的力,使四旋翼向后飞行,如图2-5(b)所示。如果想让四旋翼左右飞行,实现滚转运动,如果将电机M2、M3的转速增加或者将M1、M3的转速减小时,四旋翼会产生向右上方的合力,使四旋翼向右飞行。反之,如果减小M2、M3的转速或者增加M1、M4的转速,四旋翼会产生向左上方的合力,使四旋翼向左飞行,如图2-5(c)所示。如果想让四旋翼左右转向,实现偏航运动,将M1、M3的转速增加或者将M2、M4的转速减小,四旋翼会向右旋转,实现向右偏航。反之,如果将M1、M3的转速减小或者将M2、M4的转速增加,四旋翼会向左旋转,实现向左偏航,如图2-5(d)所示。

陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫做陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。

图2-5“X”型飞行姿态飞行原理

图片 3

四旋翼飞行姿态为“X”型飞行姿态,这种飞行姿态在控制时,可以通过同时控制四个电机的转速来控制四旋翼的飞行姿态,相比“+”型飞行姿态来说控制要复杂,但是,通过同时控制四个电机的方法控制飞行姿态的联动性较好。

陀螺仪被广泛用于航空、航天和航海领域。这是由于它的两个基本特性:一为定轴性(inertia or rigidity),另一是进动性(precession),这两种特性都是建立在角动量守恒的原则下。根据需要,陀螺仪器能提供准确的方位、水平、位置、速度和加速度等信号,以便驾驶员或用自动导航仪来控制飞机、舰船或航天飞机等航行体按一定的航线飞行,而在导弹、卫星运载器或空间探测火箭等航行体的制导中,则直接利用这些信号完成航行体的姿态控制和轨道控制。

四旋翼无人机控制原理

3、加速度传感器

飞控通过接收机接收遥控器发送的遥控信号,经过飞控程序处理后,通过电调来控制各个电机的转速,从而达到控制飞行器动作的目的。

一般而言,为了让无人机飞得更稳,只有陀螺仪是不够的,还需要加速度传感器的配合。究其原因,这是由每种传感器自身的局限性所决定的。

四旋翼无人机控制系统

陀螺仪输出的是角速度,要通过积分才能获得角度,但是即使在零输入状态时,陀螺仪仍是有输出的,它的输出是白噪声和慢变随机函数的叠加,受此影响,在积分的过程中,必然会引进累计误差,积分时间越长,误差就越大。这时候,便需要加速度传感器的加入,利用加速度传感器来对陀螺仪进行校正。

四旋翼无人机控制系统能够利用自动控制系统,能够对飞行器的构形、飞行姿态和运动参数实施控制,其载有加速度计、陀螺仪、气压计、罗盘等传感器。由它来控制各个电机的转速进而控制飞机的姿态,加上GPS或差分GPS可完成定点悬停,自主航线飞行等功能。四旋翼无人机在飞行控制上使用直接力矩,实现6自由度控制,具有多变量、非线性、强耦合和干扰敏感的特性。该飞行器的四个旋翼和四个电机分别固定在具有中心对称结构的十字架结构机身的四个端点。改变四个电机的转速从而改变升力,实现四旋翼飞行器的轨迹和姿态控制。四旋翼无人机控制系统的基础是四旋翼无人机的姿态的实时检测,姿态检测部分包括对四旋翼无人机的姿态角以及姿态变化速率的测量。微小型四旋翼飞行器是一种非完整约束的二阶欠驱动强耦合系统,在飞行过程中,四旋翼无人飞行器可以通过调节四个螺旋桨的转速直接控制其姿态角度和飞行高度,而对于飞行器的水平位置,只能通过飞行器姿态角度与水平位置之间的耦合关系来间接控制,因此实现四旋翼无人飞行器三个方向的位置控制具有较大的难度。除此之外,由于四旋翼无人飞行器体积小并且重量轻,在飞行过程中空气阻力和阻力矩对其影响比较大,因此在设计飞行控制器时还需要考虑到时变的外部干扰问题。除外界扰动以外,在每次飞行中,不同的负载导致飞行器的重量以及转动惯量也都会有很大程度上的差别。

图片 4

四旋翼无人机参数

澳门金莎娱乐手机版,金沙国际唯一官网网址